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Kinemaitcs

e Diffractive pion production, vT — unT

» T is either proton or nucleus
Q%= *qﬁv 74Ev(E\x*V)Sin2 9 +0 (mlz)
. 2
> neutrino may be v, Ve

t=(p' —p)® = O% =ty — A7
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Kinemaitcs

e Diffractive pion production, vT — unT

Ay

T 7

o Diffractive kinematics, energy v > Vyin ~ (Q%+m2)Ry

Minerva@Fermilab:
> 60000
& | e » High statistics (~ 2.5 x 10%°
S 50000
B PoT /year)
ﬁ 40000 HE . . .
i » Differential cross-sections
o som
5 are measured
g 20000 LE
. » Proton and nuclear targets
(&)
) : o (C, Fe, Pb)
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Kinemaitcs

e Diffractive pion production, vT — unT
o Diffractive kinematics, energy v >> Vi, ~ (Q%+ m2)Ry

@ In the small-v dominant contribution comes from resonances
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Adler relation & PCAC

e PCAC Hypothesis: Operator relation,

OuAu ~ mzn(x).
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Adler relation & PCAC

@ PCAC Hypothesis: Operator relation,
OuAu ~ mzdz(x).

o For the case of small g> ~ m? ~ 0 and k, ~ gy, so lepton tensor may
be cast to the form

E,(E,—V)

=228 g 6,1 0(¢) + 0 (mh)
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Adler relation & PCAC

@ PCAC Hypothesis: Operator relation,
OuAu ~ mzdz(x).

o For the case of small g> ~ m? ~ 0 and k, ~ gy, so lepton tensor may
be cast to the form
E,(Ey—vV
v =25 g0 4.0(7) 4.0 ()

@ So the cross-section may be evaluated using the PCAC hypothesis (S.
Adler, 1966)

doyT_iF _ C’i‘ 2Ev—v
dvdQ? |y 217" Eyv

OnT—F

M. Siddikov (=#% UTFSM) Diffractive neutrino-production of pions 4/25



Adler relation & PCAC

@ In real measurements, we have g2 # 0, so Adler contribution for
longitudinal part requires extrapolation up to a few GeV?.
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Adler relation & PCAC

@ In real measurements, we have g2 # 0, so Adler contribution for
longitudinal part requires extrapolation up to a few GeV?.

@ In addition, we have contributions from transverse part and from the
vector part (ﬁ(qz) for small g?)
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Black disk limit

Adler relation is inconsistent with black disk limit: consider single-pion
production,

doyT_inT _GpEv g
— = & ToxT
dvdQ® | ey ox it Ev 2T 7

off-forward diffraction, W — & elastic scattering, T — 7

qu
9% —my
(pions do not contribute due to

lepton current conservation)
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Black disk limit

Adler relation is inconsistent with black disk limit: consider single-pion
production,

doyT_ixT G_Eszv—v R
dvdQ@? Q2=0 an’m Ev X TR

[

off-forward diffraction, W — & elastic scattering, T — 7T

~ 2R

Energy dependence in limit s — oo:

~Ins ~In’s
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PCAC vs. pion dominance
Adler relation: replace W with 7 for Q> =0

doyT.F _iﬁ' 2Ev*VG
ddeZ 02=0 or ™ EVV nT—F
1.6
14
Pion dominance model: .
T, ( )N qu +Tnon—pion( ) § 1
H q2 - m72r : ’ g; 0.8 | I
§ 0.6 | |
but lepton currents are 5 {
conserved, so o I
0.2 ] .
i
q,uL,uv = ﬁ(ml) %0 oz 04 06 o8
QIGeV?]
=-contribution of pions is zero Barish et. al, 1979

=-contribution of non-pions should exactly match the contribution of pions
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Chiral symmetry & PCAC

Figure: W may couple directly to quarks in the target or via intermediate pion

F 2
$2N7< .u¢ “) +ﬁ(m7¢37a37a2¢7‘")7
gygllv) ~ W (i7u9u+mN— "%TA?’MYS <5u - ud_;)) V+0(m¢3a%a%,...).

T _ T (o, q)( Gudr —gyv) Pu(p,0),
q mrc
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Chiral symmetry & PCAC & color dipole

q q
w |44 -
q 000000®- - - q
Figure: Relation between couplings mgq, Wgq, Wn guraantees that the
amplitude remains transverse

— quq
T(a m) _ Tmr(P q) <q ,i,; guv) Py (p7A)7
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Color dipole and neutrino-proton interactions

The amplitude has a form ! 1
2T =T — /dﬁdﬁ/dzrdzr'\pn (B',r') 8 (B,r;B.r)Va(B,r),

o /2(B',r';B,r) universal object, depends only on the target T.
Known from photon-proton and photon-nuclear processes
» Universal (depends on the target)
> In the small-r limit behaves like <79 (B,r) ~ r?

» Its evolution is described by BK equation (Balitsky 1995; Kovchegov
1999)

» There are soft contribiutions, which correspond to large-size dipoles.
@ VW, W, are the distribution amplitudes of the initial and final states
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Color dipole and neutrino-proton interactions

A

T T

The amplitude has a form
o T7T = /dﬁdB’dzrd2r’\Tf,, (B'.r') ¢ (B'.r': B,r) V. (B.r),

° df-’ (B’,r'; B, r) universal object, depends only on the target T.

@ VW, WV, are the distribution amplitudes of the initial and final states
o Earlier applications of color dipole model:
» Formulated for photon-proton and proton-nuclear processes (vector
current)
» Applications to processes with neutrinos (vector current)
* electroweak DVCS (Machado 2007)
* electroweak DIS (Fiore, Zoller 2005; Gay Ducati, Machado 2007)
* charm/heavy meson production (Fiore, Zoller 2009; Gay Ducati,
Machado 2009)
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Color dipole and neutrino-proton interactions

A

T T

The amplitude has a form
o T7T = /dﬁdﬁ’dzrd2r’\Tf,r (B'.r') ¢ (B'.r': B,r) V. (B.r),

° df-’ (B’,r'; B, r) universal object, depends only on the target T.

@ VW, WV, are the distribution amplitudes of the initial and final states
o Earlier applications of color dipole model:
» Formulated for photon-proton and proton-nuclear processes (vector
current)
» Applications to processes with neutrinos (vector current)
* electroweak DVCS (Machado 2007)
* electroweak DIS (Fiore, Zoller 2005; Gay Ducati, Machado 2007)
* charm/heavy meson production (Fiore, Zoller 2009; Gay Ducati,
Machado 2009)

@ We are going to use color dipole for description of the axial current
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Extension from vector to axial current

Extension of effective models from vector to axial current is not
straightforward.

Example: extension of Generalized Vector meson Dominance (GVMD)
leads to Piketty-Stodolsky paradox:

Ozp—np 7 Onp—arp

@ VMD does not work for axial current, dominant contributions comes
from multimeson states (pm,nxn,...) (Belkov, Kopeliovich, 1986)
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Extension from vector to axial current

Extension of effective models from vector to axial current is not
straightforward.

Example: extension of Generalized Vector meson Dominance (GVMD)
leads to Piketty-Stodolsky paradox:

Ozp—np 7 Onp—arp

@ VMD does not work for axial current, dominant contributions comes
from multimeson states (pm,nxn,...) (Belkov, Kopeliovich, 1986)

@ In color dipole we do not have such problems since there is no explicit
hadrons like in GVMD
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Distribution amplitudes from the Instanton Vacuum Model
Why IVM ?

@ The model is valid for low virtualities Q2
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Distribution amplitudes from the Instanton Vacuum Model
Why IVM ?

@ The model is valid for low virtualities Q2

@ The model has built-in chiral symmetry
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Distribution amplitudes from the Instanton Vacuum Model
Why IVM ?

@ The model is valid for low virtualities Q2

@ The model has built-in chiral symmetry
o Effective action :

5:/d4x<2¢+(X)d>(x)fl/_/(f3—|—\7—|—§}’5fmfclf®¢-rm®fL) V),

» has only two parameters (average instanton size p ~ 1/600MeV and
average distance R ~ 1/200MeV'), but reproduces the low-energy
constants in chiral lagrangian.

» may be rewritten as NJL with nonlocal interactions (nonlocality from
instanton shape)
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Distribution amplitudes of pion
Pion distribution amplitudes (P. Ball et al, 2006)

1 _ i
<0‘1I_/(Y)7u75llf(x)|7t(q)> = If”/o due/(up-y+up.x)x

X <pu¢2;ﬂ(u) + ;(:.“2)1//4%@)) ,

OBy ()Ir(q) = —ifz

mu+md

i

<O|V_’(}/)G/,Lv'}’51[/(x)‘7t(q)> = / duel(uperupx)

3 mu + my
1
X (P'qu _pVZli) ¢3'77: (u),
p-z :
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Distribution amplitudes of axial meson
Axial distribution amplitudes (K.-C. Yang 2007)

S _
QP WY (R|A@) = ifama [ dueilerr o)
o) .5 . 1 ™.,
X (Pu bz ¢H(u)+eﬁ L)é'ff)(u)*5@@"’3\&@) ,
_ . 1 i(up-y+ip-x) 8. v u
<0‘W(Y)7ﬂW(X)}A(Q)> = *’fAmAguvpce\(/l)szc/o due'(uPy+ip )lT()

1 R _ _
©F W owrsw (| A@) = £ [ duem ) (e =p 0, (u)

o).y 1o m
Wmip[uzv]h\(\t)(u)‘l'59[(#)2\/]7_2/73(“) ;

v b ()
OF MY (RIA@) = fimie® .z [ duellorrtarn L.
JO
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Result for the vp — u~ 7" p cross-section
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Figure: Differential cross-section do/dvdtd@?
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Result for the vp — u~ 7" p cross-section

Figure: Total cross-section as a function of the neutrino energy E,.
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Result for the vp — u~ 7" p cross-section

Charged Current Single Pion Production

12 |

Color dipole

0 (10% cm?)

08
06 [

04 [

Figure: Total cross-section as a function of the neutrino energy E,.Compilation of
experimental data from Minerva proposal, 2004

Agreement for energies E, > 10 GeV, problem for E, < 10 GeV
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Result for the vp — u~ 7" p cross-section

Charged Current Single Pion Production
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Figure: Total cross-section as a function of the neutrino energy E,.Compilation of
experimental data from Minerva proposal, 2004

Low-energy region is dominated by A
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Result for the vp — u~ 7" p cross-section

Charged Current Single Pion Production
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F Color dipole
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Figure: Total cross-section as a function of the neutrino energy E,.Compilation of
experimental data from Minerva proposal, 2004

Difference between NEUGEN and color dipole: cross-section is slowly
growing for high energies
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Coherent neutrino-nuclear scattering

@ We use Gribov-Glauber approach
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Coherent neutrino-nuclear scattering
@ We use Gribov-Glauber approach
o Two different coherence lengths: coherence length of the pion
o 2v
< omi+ Q2
and coherence length of the effective axial meson state,
o 2v
< m+ Q¥

17/25
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Coherent neutrino-nuclear scattering
@ We use Gribov-Glauber approach
o Two different coherence lengths: coherence length of the pion
o 2v
< omi+ Q2
and coherence length of the effective axial meson state,
o 2v
< m+ Q¥

e For large Q?, [T~ [2 | so this case is similar to photon-nuclear
processes, we have only two regimes: /. > R and I < Ra.

17/25
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Coherent neutrino-nuclear scattering

@ We use Gribov-Glauber approach

o Two different coherence lengths: coherence length of the pion

o 2v
< omi+ Q2

and coherence length of the effective axial meson state,

o 2v
< m+ Q¥

e For large Q?, [T~ [2 | so this case is similar to photon-nuclear
processes, we have only two regimes: /. > R and I < Ra.

e For small m2 < Q? < m2 the two scales are essentially different,
12 < 7, so there are three regimes depending on relations between Ra
and /2,7

crc-
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Coherent neutrino-nuclear scattering (contd.)

o [2 < IF < Ra: small energy, no diffractive production.

M. Siddikov

UTFSM) Diffractive neutrino-production of pions 18/25



Coherent neutrino-nuclear scattering (contd.)

o [2 < IF < Ra: small energy, no diffractive production.

o /2 < Ry < ITF: moderate energy, nuclear effects are present; Adler
relation is valid for small Q2, o ~ A?2/3
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Coherent neutrino-nuclear scattering (contd.)

o [2 < IF < Ra: small energy, no diffractive production.

@ /2 < Ra < IF: moderate energy, nuclear effects are present; Adler
relation is valid for small Q2, o ~ A?2/3

@ Rp < [2 < [F: absorptive corrections are large, Adler relation is not
valid even for Q2 =0, o ~ Al/3
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Result for the VA — /T A differential cross-section

= )2 —, 2 -
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Figure: Ratio of cross-sections on the nucleus and proton.

dCF‘,;HM,q/dtdxd(()2 ~ A= Oya_unA ~ A/3, but Adler relation requires
OvA—unA ~ OgA ~ A2/3 = for high energies the Adler relation is broken
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Conclusion

@ We have shown that the Adler relation cannot always be correct for
the neutrino-nuclear processes—broken in black disk limit, by absorptive
corrections.
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Conclusion

@ We have shown that the Adler relation cannot always be correct for

the neutrino-nuclear processes—broken in black disk limit, by absorptive
corrections.

@ We evaluated the results in color dipole model; for small-Q? and

moderate energies we reproduce Adler relation; our results are valid
also for Q%2 #0 (and v > my)
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@ Thank You for your attention !
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Absorptive corrections

@ For elastic meson scatterig they have a form

oA ~ /dzb (1 —exp (—; zN TA(b)>>
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Absorptive corrections

@ For elastic meson scatterig they have a form

O'e”,A ~ /dzb <1 —exp (—; g,N TA(b)>>

@ For diffractive meson production they have a form

dzbexp (—%Gg,’v TA(b)) —exp (—%Gé\,/”v TA(b)) N
OnA—-MA ™~ GTL}N — GAI/,N ~

z/d2bexp (—; g,NTA(b))

-different in black disk limit
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PCAC vs. pion dominance

Adler relation: replace W with & for QR%*=0

2
doyTt_iF GE L Ey—vV

- — O. R
dVdQ2 Q2=0 27[ T EVV nT—F

Pion dominance model:

qu non—pion
T )~ 4T
I-l( ) q2_m72;; u ( )

but lepton currents are conserved, so
Quluv = o (my)

=-contribution of pions is zero=-contribution of non-pions should exactly
match to the contribution of pions
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Chiral symmetry & PCAC

Figure: W may couple directly to quarks in the target or via intermediate pion

F 2
$2N7< .u¢ “) +ﬁ(m7¢37a37a2¢7‘")7
gygllv) ~ W (i7u9u+mN— "%TA?’MYS <5u - ud_;)) V+0(m¢3a%a%,...).

T _ T (o, q)( Gudr —gyv) Pu(p,0),
q mrc
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Chiral symmetry & PCAC & color dipole

q q
w |44 -
q 000000®- - - q
Figure: Relation between couplings mgq, Wgq, Wn guraantees that the
amplitude remains transverse

— quq
T(a m) _ Tmr(P q) <q ,i,; guv) Py (p7A)7
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